Nonlinear algebra and matrix completion

Daniel Irving Bernstein

Massachusetts Institute of Technology and ICERM

dibernst@mit.edu
dibernstein.github.io

- Aalto University summer school on algebra, statistics, and combinatorics (2016)
- David and Lucile Packard Foundation
- NSF DMS-0954865, DMS-1802902
- ICERM

Motivation

Problem

Let $\Omega \subseteq [m] \times [n]$. For a given Ω -partial matrix $X \in \mathbb{C}^{\Omega}$, the low-rank matrix completion problem is

Minimize rank(M) subject to $M_{ij} = X_{ij}$ for all $(i, j) \in \Omega$

Example

Let $\Omega = \{(1,1),(1,2),(2,1)\}$ and consider the following $\Omega\text{-partial}$ matrix

$$X = \begin{pmatrix} 1 & 2 \\ 3 & \cdot \end{pmatrix}$$

Some applications:

- Collaborative filtering (e.g. the "Netflix problem")
- Computer vision
- Existence of MLE in Gaussian graphical models (Uhler 2012)

State of the art: nuclear norm minimization

The nuclear norm of a matrix, denoted $\|\cdot\|_*,$ is the sum of its singular values

Theorem (Candès and Tao 2010)

Let $M \in \mathbb{R}^{m \times n}$ be a fixed matrix of rank r that is sufficiently "incoherent." Let $\Omega \subseteq [m] \times [n]$ index a set of k entries of M chosen uniformly at random. Then with "high probability," M is the unique solution to

> minimize $||X||_*$ subject to $X_{ij} = M_{ij}$ for all $(i, j) \in \Omega$.

The upshot: the minimum rank completion of a partial matrix can be recovered via semidefinite programming if:

- the known entries are chosen uniformly at random
- the completed matrix is sufficiently "incoherent"

Goal: use algebraic geometry to understand the structure of low-rank matrix completion and develop methods not requiring above assumptions

The algebraic approach

Some subsets of entries of a rank-r matrix satisfy nontrivial polynomials.

Example

If the following matrix has rank 1, then the bold entries must satisfy the following polynomial

(x_{11})	x_{12}	<i>x</i> ₁₃
x_{21}	<i>x</i> ₂₂	x ₂₃
x ₃₁	x ₃₂	x ₃₃ /

$$x_{12}x_{21}x_{33} - x_{13}x_{31}x_{11} = 0$$

Király, Theran, and Tomioka propose using these polynomials to:

- Bound rank of completion of a partial matrix from below
- Solve for missing entries

Question

Which subsets of entries of an $m \times n$ matrix of rank r satisfy nontrivial polynomials?

Daniel Irving Bernstein

Graphs and partial matrices

Subsets of entries of a matrix can be encoded by graphs:

- non-symmetric matrices \rightarrow bipartite graphs
- symmetric matrices \rightarrow semisimple graphs

$Mat_r^{m \times n}$	$m \times n$ matrices of rank $\leq r$	$ \begin{pmatrix} 5 & \cdot & \cdot \\ -4 & -2 & \cdot \\ \cdot & 8 & 3 \end{pmatrix} $	$ \begin{array}{c} r1 & \bullet & c1 \\ r2 & \bullet & c2 \\ r3 & \bullet & c3 \end{array} $
Sym ^{n×n}	$n \times n$ symmetric matrices of rank $\leq r$	$ \begin{pmatrix} 7 & 4 & \cdot \\ 4 & \cdot & 9 \\ \cdot & 9 & 5 \end{pmatrix} $	

- A *G*-partial matrix is a partial matrix whose known entries lie at the positions corresponding to the edges of *G*.
- A *completion* of a *G*-partial matrix *M* is a matrix whose entries at positions corresponding to edges of *G* agree with the entries of *M*.

Definition

Given a (bipartite/semisimple) graph G, the **generic completion rank of** G, denoted gcr(G), is the minimum rank of a **complex** completion of a G-partial matrix **with generic entries**.

type	G	pattern	gcr(G)
symm		$\begin{pmatrix} a_{11} & ?\\ ? & a_{22} \end{pmatrix}$	1
symm		$\begin{pmatrix} a_{11} & a_{12} & ? \\ a_{12} & a_{22} & a_{23} \\ ? & a_{23} & ? \end{pmatrix}$	2
non	r1 c1 r2 c2 r2 c3	$\begin{pmatrix} a_{11} & a_{12} & ? \\ a_{21} & ? & a_{23} \end{pmatrix}$	1

Problem

Gain a combinatorial understanding of generic completion rank - how can one use the combinatorics of G to infer gcr(G)?

Proposition (Folklore)

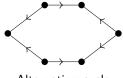
Given a bipartite graph G, $gcr(G) \leq 1$ iff G has no cycles.

Proposition (Folklore)

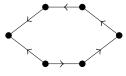
Given a semisimple graph G, $gcr(G) \le 1$ iff G has no even cycles, and every connected component has at most one odd cycle.

Generic completion rank 2 - nonsymmetric case

A cycle in a directed graph is *alternating* if the edge directions alternate.



Alternating cycle



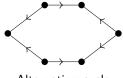
Non-alternating cycle

Theorem (B.-, 2016)

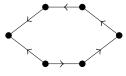
Given a bipartite graph G, $gcr(G) \le 2$ if and only if there exists an acyclic orientation of G that has no alternating cycle.

Generic completion rank 2 - nonsymmetric case

A cycle in a directed graph is *alternating* if the edge directions alternate.



Alternating cycle



Non-alternating cycle

Theorem (B.-, 2016)

Given a bipartite graph G, $gcr(G) \le 2$ if and only if there exists an acyclic orientation of G that has no alternating cycle.

Theorem (B.-, 2016)

Given a bipartite graph G, $gcr(G) \le 2$ if and only if there exists an acyclic orientation of G that has no alternating cycle.

- Rephrase the question: describe the independent sets in the algebraic matroid underlying the variety of $m \times n$ matrices of rank at most 2
- This algebraic matroid is a restriction of the algebraic matroid underlying a Grassmannian Gr(2, N) of affine planes
- Algebraic matroid structure is preserved under tropicalization
- Apply Speyer and Sturmfels' result characterizing the tropicalization of Gr(2, N) in terms of tree metrics to reduce to an easier combinatorial problem

Open question

Does there exist a polynomial time algorithm to check the combinatorial condition in the above theorem, or is this decision problem NP-hard?

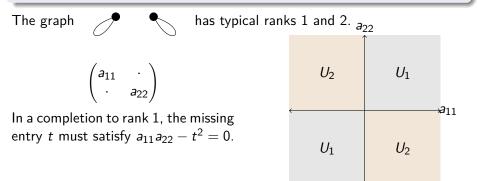
Daniel Irving Bernstein

Issue: real vs complex

What happens when you only want to consider *real* completions?

Definition

Given a bipartite or semisimple graph G, there may exist multiple open sets U_1, \ldots, U_k in the space of **real** G-partial matrices such that the minimum rank of a completion of a partial matrix in U_i is r_i . We call the r_i s the **typical ranks of** G.



Proposition (B.-Blekherman-Sinn 2018)

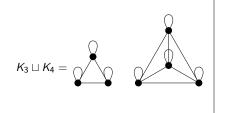
Let G be a bipartite or semisimple graph.

- The minimum typical rank of G is gcr(G).
- **2** The maximum typical rank of G is at most $2 \operatorname{gcr}(G)$.
- All integers between gcr(G) and the maximum typical rank of G are also typical ranks of G.

See also Bernardi, Blekherman, and Ottaviani 2015 and Blekherman and Teitler 2015.

Case study: disjoint union of cliques

Let $K_m \sqcup K_n$ denote the disjoint union of two cliques with all loops



(a ₁₁	a ₁₂	a ₁₃	?	?	?	?)
a ₁₂	a ₂₂	a ₂₃	?	?	?	?
a ₁₃	a ₂₃	a ₃₃	?	?	?	?
?	?	?	a ₄₄	a ₄₅	a ₄₆	a ₄₇
?	?	?	a ₄₅	a ₅₅		a ₅₇
?	?	?	a ₄₆	a ₅₆	a ₆₆	a ₆₇
(?	?	?	a 47	a ₅₇	<i>a</i> 67	a77)

Proposition (B.-Blekherman-Lee)

The generic completion rank of $K_m \sqcup K_n$ is $\max\{m, n\}$. The maximum typical rank of $K_m \sqcup K_n$ is m + n.

Proposition (B.-Blekherman-Lee)

The generic completion rank of $K_m \sqcup K_n$ is $\max\{m, n\}$. The maximum typical rank of $K_m \sqcup K_n$ is m + n.

A $(K_m \sqcup K_n)$ -partial matrix looks like:

$$M = \begin{pmatrix} A & X \\ X^T & B \end{pmatrix}$$

By Schur complements:

$$\operatorname{rank}(M) = \operatorname{rank}(A) + \operatorname{rank}(B - X^T A^{-1} X).$$

If $A \prec 0$ and $B \succ 0$, then $det(B - X^T A^{-1}X) > 0$ for real X.

Corollary

Every integer between $\max\{m, n\}$ and m + n is a typical rank of $K_m \sqcup K_n$.

Given real symmetric matrices A and B of full rank, of possibly different sizes:

- $p_A(p_B)$ denotes the number of positive eigenvalues of A(B)
- $n_A(n_B)$ denotes the number of negative eigenvalues of A(B)
- the *eigenvalue sign disagreement of* A and B is defined as:

$$\operatorname{esd}(A,B) := \begin{cases} 0 & \text{if } (p_A - p_B)(n_A - n_B) \ge 0 \\ \min\{|p_A - p_B|, |n_A - n_B|\} & \text{otherwise} \end{cases}$$

Theorem (B.-Blekherman-Lee)

Let $M = \begin{pmatrix} A & X \\ X^T & B \end{pmatrix}$ be a generic real $K_m \sqcup K_n$ -partial matrix. Then M is minimally completable to rank max $\{m, n\}$ + esd(A, B).

Theorem (B.-Blekherman-Lee)

Let G be a semisimple graph on n vertices. Then n is a typical rank of G if and only if the complement graph of G is bipartite.

If the complement is bipartite, then n is a typical rank:

$$M = \begin{pmatrix} A & X \\ X^T & B \end{pmatrix}$$

By Schur complements:

$$\operatorname{rank}(M) = \operatorname{rank}(A) + \operatorname{rank}(B - X^T A^{-1}X),$$

so if $A \prec 0$ and $B \succ 0$, then det $(B - X^T A^{-1}X)$ is strictly positive.

Theorem (B.-Blekherman-Lee)

Let G be a semisimple graph on n vertices. Then n is a typical rank of G if and only if the complement graph of G is bipartite.

If complement is **not** bipartite, then *n* is **not** a typical rank:

- A graph is bipartite if and only if it is free of odd cycles
- If complement graph *is* an odd cycle, then determinant of a *G*-partial matrix, viewed as a polynomial in the unknown entires, has odd degree
- Deleting edges from a graph will not increase maximum typical rank.

(a ₁₁	х	a ₁₃	a_{14}	t \
x	a ₂₂	У	<i>a</i> ₂₄	a ₂₅
a ₁₃	У	a 33	z	a 35
a ₁₄	<i>a</i> ₂₄	Z	a 44	w
\ t	a 25	a 35	w	a55/

Typical ranks for nonsymmetric matrices: some examples

The following bipartite graph has 2 and 3 as typical ranks.

(?	a ₁₂	a ₁₃	a_{14}
a ₂₁	?	a ₂₃	a ₂₄
a ₃₁	<i>a</i> ₃₂	?	a ₃₄
a_{41}	a 42	<i>a</i> 43	?]

Let mtr(G) denote the maximum typical rank of G.

Theorem (B.-Blekherman-Sinn)

Let G be obtained by gluing two bipartite graphs G_1 and G_2 along a complete bipartite subgraph $K_{m,n}$. If

 $\max\{\mathsf{mtr}(G_1),\mathsf{mtr}(G_2)\} \geq \max\{m,n\},\$

then $mtr(G) = max\{mtr(G_1), mtr(G_2)\}$. The same is true for generic completion rank.

Open question

Does there exist a bipartite graph that has more than two typical ranks?

Daniel Irving Bernstein

Empty k-cores

The k-core of a graph G is the graph obtained by iteratively removing vertices of degree k - 1 or less. The 2-core of the graph below is empty.

Theorem (B.-, Blekherman, Sinn)

Let G be bipartite. If the k-core of G is empty, then all typical ranks of G are at most k - 1.

Corollary

Let G be bipartite. Then the maximum typical rank of G is $2 \operatorname{gcr}(G) - 1$.

Open question

Which bipartite graphs of generic completion rank 2 also have 3 as a typical rank?

- All generic G-partial matrices can be completed to rank gcr(G) over $\mathbb C$
- We can characterize all the bipartite graphs with generic completion rank ≤ 2 (semisimple case is still open)
- Over the reals, a graph can have many typical ranks

Open problems:

- Find a polynomial-time algorithm to decide if a given bipartite graph has an acyclic orientation with no alternating cycle, or prove that this decision problem is NP-hard
- Find a bipartite graph that exhibits three or more typical ranks
- Characterize the graphs with generic completion rank 2 that also exhibit 3 as a typical rank

References

Emmanuel J. Candès and Terence Tao The power of convex relaxation: near-optimal matrix completion. IEEE Transactions on Information Theory, volume 56 no. 5 (2010), pages 2053-2080.

Franz Király, Louis Theran, and Ryota Tomioka. The algebraic combinatorial approach for low-rank matrix completion. Journal of Machine Learning Research, 16:1391–1436, 2015.