Nonlinear algebra and matrix completion

Daniel Irving Bernstein

Massachusetts Institute of Technology and ICERM
dibernst@mit.edu
dibernstein.github.io

Funding and institutional acknowledgments

- Aalto University summer school on algebra, statistics, and combinatorics (2016)
- David and Lucile Packard Foundation
- NSF DMS-0954865, DMS-1802902
- ICERM

Motivation

Problem

Let $\Omega \subseteq[m] \times[n]$. For a given Ω-partial matrix $X \in \mathbb{C}^{\Omega}$, the low-rank matrix completion problem is

Minimize $\operatorname{rank}(M)$ subject to $M_{i j}=X_{i j}$ for all $(i, j) \in \Omega$

Example

Let $\Omega=\{(1,1),(1,2),(2,1)\}$ and consider the following Ω-partial matrix

$$
X=\left(\begin{array}{ll}
1 & 2 \\
3 & \cdot
\end{array}\right)
$$

Some applications:

- Collaborative filtering (e.g. the "Netflix problem")
- Computer vision
- Existence of MLE in Gaussian graphical models (Uhler 2012)

State of the art: nuclear norm minimization

The nuclear norm of a matrix, denoted $\|\cdot\|_{*}$, is the sum of its singular values

Theorem (Candès and Tao 2010)

Let $M \in \mathbb{R}^{m \times n}$ be a fixed matrix of rank r that is sufficiently "incoherent." Let $\Omega \subseteq[m] \times[n]$ index a set of k entries of M chosen uniformly at random. Then with "high probability," M is the unique solution to

$$
\begin{array}{ll}
\operatorname{minimize} & \|X\|_{*} \\
\text { subject to } & X_{i j}=M_{i j} \quad \text { for all }(i, j) \in \Omega .
\end{array}
$$

The upshot: the minimum rank completion of a partial matrix can be recovered via semidefinite programming if:

- the known entries are chosen uniformly at random
- the completed matrix is sufficiently "incoherent"

Goal: use algebraic geometry to understand the structure of low-rank matrix completion and develop methods not requiring above assumptions

The algebraic approach

Some subsets of entries of a rank- r matrix satisfy nontrivial polynomials.

Example

If the following matrix has rank 1 , then the bold entries must satisfy the following polynomial

$$
\left(\begin{array}{lll}
\mathbf{x}_{11} & \mathbf{x}_{12} & x_{13} \\
\mathbf{x}_{21} & x_{22} & \mathbf{x}_{23} \\
x_{31} & \mathbf{x}_{32} & \mathbf{x}_{33}
\end{array}\right) \quad x_{12} x_{21} x_{33}-x_{13} x_{31} x_{11}=0
$$

Király, Theran, and Tomioka propose using these polynomials to:

- Bound rank of completion of a partial matrix from below
- Solve for missing entries

Question

Which subsets of entries of an $m \times n$ matrix of rank r satisfy nontrivial polynomials?

Graphs and partial matrices

Subsets of entries of a matrix can be encoded by graphs:

- non-symmetric matrices \rightarrow bipartite graphs
- symmetric matrices \rightarrow semisimple graphs

Mat $_{r}^{m \times n}$	$m \times n$ matrices of rank $\leq r$	$\left(\begin{array}{ccc}5 & \cdot & \cdot \\ -4 & -2 & \cdot \\ \cdot & 8 & 3\end{array}\right)$	r 1 r 2 r 3 c 1 c_{2}	
Sym $_{r}^{n \times n}$	$n \times n$ symmetric matrices of rank $\leq r$	$\left(\begin{array}{ccc}7 & 4 & \cdot \\ 4 & \cdot & 9 \\ \cdot & 9 & 5\end{array}\right)$	0	3

- A G-partial matrix is a partial matrix whose known entries lie at the positions corresponding to the edges of G.
- A completion of a G-partial matrix M is a matrix whose entries at positions corresponding to edges of G agree with the entries of M.

Generic completion rank

Definition

Given a (bipartite/semisimple) graph G, the generic completion rank of G, denoted $\operatorname{gcr}(G)$, is the minimum rank of a complex completion of a G-partial matrix with generic entries.

type	G	pattern	$\operatorname{gcr}(G)$
symm	1 ¢ 0_{2}	$\left(\begin{array}{cc}a_{11} & ? \\ ? & a_{22}\end{array}\right)$	1
symm	$10 \cdot 3$	$\left(\begin{array}{ccc}a_{11} & a_{12} & ? \\ a_{12} & a_{22} & a_{23} \\ ? & a_{23} & ?\end{array}\right)$	2
non		$\left(\begin{array}{ccc}a_{11} & a_{12} & ? \\ a_{21} & ? & a_{23}\end{array}\right)$	1

Generic completion rank

Problem

Gain a combinatorial understanding of generic completion rank - how can one use the combinatorics of G to infer $\operatorname{gcr}(G)$?

Proposition (Folklore)

Given a bipartite graph $G, \operatorname{gcr}(G) \leq 1$ iff G has no cycles.

Proposition (Folklore)

Given a semisimple graph $G, \operatorname{gcr}(G) \leq 1$ iff G has no even cycles, and every connected component has at most one odd cycle.

Generic completion rank 2 - nonsymmetric case

A cycle in a directed graph is alternating if the edge directions alternate.

Alternating cycle

Non-alternating cycle

Theorem (B.-, 2016)

Given a bipartite graph $G, \operatorname{gcr}(G) \leq 2$ if and only if there exists an acyclic orientation of G that has no alternating cycle.

$$
\operatorname{gcr}(G)=2
$$

$\operatorname{gcr}(G)=3$

Generic completion rank 2 - nonsymmetric case

A cycle in a directed graph is alternating if the edge directions alternate.

Alternating cycle

Non-alternating cycle

Theorem (B.-, 2016)

Given a bipartite graph $G, \operatorname{gcr}(G) \leq 2$ if and only if there exists an acyclic orientation of G that has no alternating cycle.

$$
\operatorname{gcr}(G)=2
$$

$\operatorname{gcr}(G)=3$

Proof sketch

Theorem (B.-, 2016)

Given a bipartite graph $G, \operatorname{gcr}(G) \leq 2$ if and only if there exists an acyclic orientation of G that has no alternating cycle.

- Rephrase the question: describe the independent sets in the algebraic matroid underlying the variety of $m \times n$ matrices of rank at most 2
- This algebraic matroid is a restriction of the algebraic matroid underlying a Grassmannian $\operatorname{Gr}(2, N)$ of affine planes
- Algebraic matroid structure is preserved under tropicalization
- Apply Speyer and Sturmfels' result characterizing the tropicalization of $\operatorname{Gr}(2, N)$ in terms of tree metrics to reduce to an easier combinatorial problem

Open question

Does there exist a polynomial time algorithm to check the combinatorial condition in the above theorem, or is this decision problem NP-hard?

Issue: real vs complex

What happens when you only want to consider real completions?

Definition

Given a bipartite or semisimple graph G, there may exist multiple open sets U_{1}, \ldots, U_{k} in the space of real G-partial matrices such that the minimum rank of a completion of a partial matrix in U_{i} is r_{i}. We call the r_{i} s the typical ranks of G.

The graph

$$
\left(\begin{array}{cc}
a_{11} & \cdot \\
\cdot & a_{22}
\end{array}\right)
$$

In a completion to rank 1 , the missing entry t must satisfy $a_{11} a_{22}-t^{2}=0$.

Facts about typical ranks

Proposition (B.-Blekherman-Sinn 2018)

Let G be a bipartite or semisimple graph.
(1) The minimum typical rank of G is $\operatorname{gcr}(G)$.
(2) The maximum typical rank of G is at most $2 \operatorname{gcr}(G)$.
(3) All integers between $\operatorname{gcr}(G)$ and the maximum typical rank of G are also typical ranks of G.

See also Bernardi, Blekherman, and Ottaviani 2015 and Blekherman and Teitler 2015.

Case study: disjoint union of cliques

Let $K_{m} \sqcup K_{n}$ denote the disjoint union of two cliques with all loops

Proposition (B.-Blekherman-Lee)

The generic completion rank of $K_{m} \sqcup K_{n}$ is $\max \{m, n\}$. The maximum typical rank of $K_{m} \sqcup K_{n}$ is $m+n$.

Case study: disjoint union of cliques

Proposition (B.-Blekherman-Lee)

The generic completion rank of $K_{m} \sqcup K_{n}$ is $\max \{m, n\}$. The maximum typical rank of $K_{m} \sqcup K_{n}$ is $m+n$.

A $\left(K_{m} \sqcup K_{n}\right)$-partial matrix looks like:

$$
M=\left(\begin{array}{cc}
A & X \\
X^{T} & B
\end{array}\right)
$$

By Schur complements:

$$
\operatorname{rank}(M)=\operatorname{rank}(A)+\operatorname{rank}\left(B-X^{\top} A^{-1} X\right)
$$

If $A \prec 0$ and $B \succ 0$, then $\operatorname{det}\left(B-X^{T} A^{-1} X\right)>0$ for real X.

Corollary

Every integer between $\max \{m, n\}$ and $m+n$ is a typical rank of $K_{m} \sqcup K_{n}$.

Case study: disjoint union of cliques

Given real symmetric matrices A and B of full rank, of possibly different sizes:

- $p_{A}\left(p_{B}\right)$ denotes the number of positive eigenvalues of $A(B)$
- $n_{A}\left(n_{B}\right)$ denotes the number of negative eigenvalues of $A(B)$
- the eigenvalue sign disagreement of A and B is defined as:

$$
\operatorname{esd}(A, B):= \begin{cases}0 & \text { if }\left(p_{A}-p_{B}\right)\left(n_{A}-n_{B}\right) \geq 0 \\ \min \left\{\left|p_{A}-p_{B}\right|,\left|n_{A}-n_{B}\right|\right\} & \text { otherwise }\end{cases}
$$

Theorem (B.-Blekherman-Lee)

Let $M=\left(\begin{array}{cc}A & X \\ X^{T} & B\end{array}\right)$ be a generic real $K_{m} \sqcup K_{n}$-partial matrix. Then M is minimally completable to rank $\max \{m, n\}+\operatorname{esd}(A, B)$.

When full rank is typical

Theorem (B.-Blekherman-Lee)

Let G be a semisimple graph on n vertices. Then n is a typical rank of G if and only if the complement graph of G is bipartite.

If the complement is bipartite, then n is a typical rank:

$$
M=\left(\begin{array}{cc}
A & X \\
X^{T} & B
\end{array}\right)
$$

By Schur complements:

$$
\operatorname{rank}(M)=\operatorname{rank}(A)+\operatorname{rank}\left(B-X^{\top} A^{-1} X\right)
$$

so if $A \prec 0$ and $B \succ 0$, then $\operatorname{det}\left(B-X^{T} A^{-1} X\right)$ is strictly positive.

When full rank is typical

Theorem (B.-Blekherman-Lee)

Let G be a semisimple graph on n vertices. Then n is a typical rank of G if and only if the complement graph of G is bipartite.

If complement is not bipartite, then n is not a typical rank:

- A graph is bipartite if and only if it is free of odd cycles
- If complement graph is an odd cycle, then determinant of a G-partial matrix, viewed as a polynomial in the unknown entires, has odd degree
- Deleting edges from a graph will not increase maximum typical rank.

$$
\left(\begin{array}{ccccc}
a_{11} & \mathbf{x} & a_{13} & a_{14} & \mathbf{t} \\
\mathbf{x} & a_{22} & \mathbf{y} & a_{24} & a_{25} \\
a_{13} & \mathbf{y} & a_{33} & \mathbf{z} & a_{35} \\
a_{14} & a_{24} & \mathbf{z} & a_{44} & \mathbf{w} \\
\mathbf{t} & a_{25} & a_{35} & \mathbf{w} & a_{55}
\end{array}\right)
$$

Typical ranks for nonsymmetric matrices: some examples

The following bipartite graph has 2 and 3 as typical ranks.

$$
\left(\begin{array}{cccc}
? & a_{12} & a_{13} & a_{14} \\
a_{21} & ? & a_{23} & a_{24} \\
a_{31} & a_{32} & ? & a_{34} \\
a_{41} & a_{42} & a_{43} & ?
\end{array}\right)
$$

Let $\operatorname{mtr}(G)$ denote the maximum typical rank of G.

Theorem (B.-Blekherman-Sinn)

Let G be obtained by gluing two bipartite graphs G_{1} and G_{2} along a complete bipartite subgraph $K_{m, n}$. If

$$
\max \left\{\operatorname{mtr}\left(G_{1}\right), \operatorname{mtr}\left(G_{2}\right)\right\} \geq \max \{m, n\},
$$

then $\operatorname{mtr}(G)=\max \left\{\operatorname{mtr}\left(G_{1}\right), \operatorname{mtr}\left(G_{2}\right)\right\}$. The same is true for generic completion rank.

Open question

Does there exist a bipartite graph that has more than two typical ranks?

Empty k-cores

The k-core of a graph G is the graph obtained by iteratively removing vertices of degree $k-1$ or less. The 2-core of the graph below is empty.

Theorem (B.-, Blekherman, Sinn)
Let G be bipartite. If the k-core of G is empty, then all typical ranks of G are at most $k-1$.

Corollary

Let G be bipartite. Then the maximum typical rank of G is $2 \operatorname{gcr}(G)-1$.

Open question

Which bipartite graphs of generic completion rank 2 also have 3 as a typical rank?

Conclusion

- All generic G-partial matrices can be completed to rank $\operatorname{gcr}(G)$ over \mathbb{C}
- We can characterize all the bipartite graphs with generic completion rank ≤ 2 (semisimple case is still open)
- Over the reals, a graph can have many typical ranks

Open problems:

- Find a polynomial-time algorithm to decide if a given bipartite graph has an acyclic orientation with no alternating cycle, or prove that this decision problem is NP-hard
- Find a bipartite graph that exhibits three or more typical ranks
- Characterize the graphs with generic completion rank 2 that also exhibit 3 as a typical rank

References

A. Bernardi, G. Blekherman, and G. Ottaviani.

On real typical ranks.
Bollettino dell'Unione Matematica Italiana, 11(3):293-307, Sep 2018.
Daniel Irving Bernstein.
Completion of tree metrics and rank-2 matrices.
Linear Algebra and its Applications, volume 533 (2017), pages 1-13.
arXiv:1612.06797, 2017
Daniel Irving Bernstein, Grigoriy Blekherman, and Rainer Sinn.
Typical and generic ranks in matrix completion.
arXiv preprint, 2018. arXiv:1802.09513.
Grigoriy Blekherman and Zach Teitler.
On maximum, typical and generic ranks.
Mathematische Annalen, 362(3-4):1021-1031, 2015.
© Emmanuel J. Candès and Terence Tao
The power of convex relaxation: near-optimal matrix completion.
IEEE Transactions on Information Theory, volume 56 no. 5 (2010), pages 2053-2080.
Franz Király, Louis Theran, and Ryota Tomioka.
The algebraic combinatorial approach for low-rank matrix completion.
Journal of Machine Learning Research, 16:1391-1436, 2015.

